Rabu, 06 Juni 2012

PROTEKSI GANGGUAN TANAH PADA STATOR GENERATOR



PROTEKSI GANGGUAN TANAH PADA STATOR GENERATOR

 Lodien Hutapea
5103331020
Pendidikan Teknik Elektro
Fakultas Teknik
Universitas Negeri Medan


Abstrak
 Arus gangguan tanah adalah arus yang mengalir melalui pembumian. Sedangkan arus yang tidak melalui pembumian disebut arus gangguan fasa. Arus gangguan semacam ini berbahaya bagi peralatan karena nilainya sangat besar dan dapat merusak isolasi peralatan tersebut. Arus gangguan hubung singkat ke tanah harus dapat dideteksi dan kemudian diisolir agar tidak mengalir ke peralatan sistem tenaga listrik.

A.      PENDAHULUAN
Metode pembumian suatu generator menentukan jenis proteksi gangguan tanah yang akan diterapkan. Faktor kuncinya adalah arus gangguan tanah yang muncul pada sistem tersebut. arus ini dapat bervariasi dari beberapa ampere sampai sebesar arus gangguan tiga fasa.
1.      Sistem yang tidak dibumikan Suatu sistem dikatakan tidak dibumikan apabila tidak terdapat hubungan fisik antara netral dan tanah. Hanya terdapat kapasitansi dari sistem tersebut ke tanah. Kapasitansi terbesar adalah kapasitansi yang berasal dari belitan stator generator.

Gambar 1 Generator yang tidak dibumikan
Jika kapasitansi pada tiap fasa ke tanah sama besarnya, maka tegangan fasa ke netral pada keadaan normal akan muncul pada tiap fasa dan tanah seperti Gambar 3.5(a). Arus hubung singkat fasa ke tanah pada sistem yang tidak dibumikan adalah fungsi dari kapasitansi shunt ke tanah dan biasanya bernilai kurang dari 10 A.

Gambar 2 Arus pengisian kapasitansi ke tanah pada sistem yang tidak dibumikan

Gambar 3 Tegangan kapasitansi tiap fasa ke tanah
Pada keadaan normal, arus pengisian pada tiap fasa adalah:

Jika terjadi hubung singkat satu fasa ke tanah, tegangan sistem akan berubah dan tegangan antara fasa yang sehat dengan tanah akan meningkat menjadi tegangan fasa – fasa. Hal ini menyebabkan naiknya arus pengisian pada masing - masing fasa yang sehat sebesar . arus gangguan tanah (Icf) merupakan penjumlahan dari arus pengisian pada fasa yang sehat (Ib dan Ic). Arus pada fasa yang sehat menjadi:


Arus gangguan tanah menjadi tiga kali arus pengisian kapasitansi, seperti persamaan berikut:

2.      Pembumian langsung
Pada sistem pembumian langsung, tidak ada impedansi yang dihubungkan secara sengaja antara titik netral generator dengan tanah. Setiap terjadi gangguan hubung singkat selalu mengakibatkan terputusnya saluran. Arus gangguan sangat besar sehingga berbahaya bagi peralatan. Pada metode ini, arus gangguan tanah dapat mencapai nilai arus gangguan tiga fasanya.
Pembumian langsung pada generator hanya dapat dilakukan jika reaktansi urutan nol (X0) generator cukup besar. Reaktansi ini berguna untuk membatasi arus gangguan tanah agar lebih kecil dari arus gangguan tiga fasa. Metode ini hanya dapat diterapkan pada generator yang didesain khusus agar tahan terhadap arus gangguan yang tinggi.
3.      Pembumian melalui tahanan tinggi Tahanan tinggi dihubungkan antara titik netral generator dengan tanah. Terkadang, tahanan rendah dihubungkan pada belitan sekunder transformator satu fasa (transformator distribusi) atau pada pembumian netral transformator. Metode ini membatasi arus gangguan tanah sebesar 5-10 A.
Karakteristik pembumian tahanan tinggi adalah :
a. Tidak terjadi pemutusan pada gangguan tanah yang pertama (kontinuitas pelayanan baik),
b. Tidak berbahaya bagi manusia yang berada dekat titik gangguan,
c. Memperkecil resiko kerusakan pada peralatan,
d. Memperkecil tegangan lebih transient akibat gangguan busur tanah.
4.      Pembumian melalui transformator distribusi
Pembumian melalui transformator distribusi adalah cara yang paling sering digunakan untuk pembumian impedansi tinggi. Pada Gambar (3.4) ditunjukkan skema pembumian menggunakan transformator distribusi. Tahanan yang dilihat pada netral generator sama dengan nilai ohmic dari resistor sekunder dikali dengan akar dari turn rasio transformator. Rangkaian yang ekivalen juga dapat diperoleh dengan memasang sebuah resistor langsung antara netral dan tanah. Kelebihan penggunaan transformator distribusi ini adalah menghindari pemakaian resistor tegangan tinggi yang relatif mahal.

Gambar 4 Pembumian dengan transformator distribusi

Belitan primer transformator harus mempunyai rating tegangan yang sama atau lebih besar dari tegangan fasa-netral generator. Belitan sekunder transformator pembumian biasanya mempunyai tegangan sekunder 120 V atau 240 V. Transformator pembumian harus mempunyai ketahanan terhadap tegangan lebih untuk menghindari saturasi jika generator bekerja pada tegangan yang lebih tinggi dari rating tegangannya. Resistor yang dihubungkan pada belitan sekunder harus dipilih sedemikian rupa agar arus gangguan tanah (If) yang datang dari transformator distribusi sama atau lebih besar dari arus gangguan tanah yang datang dari kapasitansi shunt sistem (Icf). Biasanya arus dari transformator distribusi di atur agar sama dengan arus kapasitansi shunt sistem.
Arus gangguan yang mengalir melalui kapasitansi shunt (Icf) adalah :

Arus gangguan yang melalui resistor transformator distribusi adalah :

Dengan :

Nilai ohmic dari resistor agar memenuhi syarat Icf = Ir adalah :

Jika resitor yang dipilih memenuhi spesifikasi ini, maka arus gangguan yang muncul biasanya akan bernilai 5 – 15 A.
5.      Pembumian melalui kumparan peterson
Metode ini mempunyai skema yang sama dengan pembumian dengan tahanan tinggi, kecuali reaktor yang dapat diatur nilainya yang dipasang pada sekunder trafo.
6.      Pembumian melalui tahanan rendah
Titik netral generator dihubungkan ke tanah melalui sebuah tahanan yang berfungsi untuk membatasi arus gangguan tanah sampai beberapa ratus ampere (200-600 A). Arus gangguan ini sangat besar dan dapat merusak stator, namun pada saat yang sama, arus ini cukup besar sehingga dapat dirasakan oleh rele sehingga didapat sistem proteksi yang handal dan selektif. Sistem pembumian melalui tahanan rendah jarang digunakan sekarang karena besarnya resiko kebakaran stator generator akibat besarnya arus yang mengalir saat gangguan. Namun, sistem pembumian ini paling sering digunakan untuk industri yang menggunakan tegangan menengah. Karakteristik pembumian melalui tahanan rendah adalah :
a. Pemutusan akibat gangguan dapat dilakukan,
b. Memperkecil tegangan lebih transient akibat gangguan busur tanah,
c. Memperkecil kerusakan pada titik gangguan. 


II. GANGGUAN TANAH PADA STATOR 

Gangguan hubung singkat ke tanah merupakan gangguan yang umum terjadi pada suatu generator. Gangguan ini dapat disebabkan oleh penuaan isolasi pada belitan karena pengaruh lingkungan seperti kelembapan, minyak yang bercampur dengan debu yang terdapat pada permukaan luar slot stator. Hal ini dapat menyebabkan peluahan pada bagian ujung belitan sehingga terhubung ke tanah. Jenis gangguan yang mungkin terjadi adalah :
a. Hubung singkat fasa ke tanah
b. Hubung singkat fasa ke fasa
c. Hubung singkat inter turn

Arus gangguan hubung singkat fasa ke tanah diminimalisasi oleh tahanan pembumian generator tersebut. Di antara ketiga jenis gangguan di atas, gangguan yang mempunyai kemungkinan muncul terbesar adalah gangguan fasa ke tanah. Isolasi diantara dua fasa minimal dua kali lebih tebal daripada isolasi antara belitan ke inti besi, sehingga kemungkinan terjadinya hubung singkat antar fasa sangat kecil. Gangguan interturn muncul karena adanya arus surja. Namun gelombang surja ini telah dipotong di lightning arrester sebelum mencapai generator. Generator harus diproteksi dari gangguan hubung tanah stator karena dua hal yaitu :
1)      Sebagai sebuah gangguan tentunya fenomena tersebut merupakan kondisi tidak normal dalam kinerja mesin yang menyebabkan hal – hal yang tidak diinginkan dalam besaran tegangan, arus, osilasi, dan kerusakan.
2)      Gangguan tanah yang tidak terdeteksi dan tidak ditangani dengan baik dapat berkembang menjadi gangguan fasa ke fasa atau menjadi gangguan antar lilitan. Gangguan fasa ke fasa terjadi jika gangguan fasa ke tanah yang lain terjadi. Dan gangguan ini akan menimbulkan arus hubung singkat yang besar dapat merusak generator.

Terdapat dua kemungkinan pada generator apabila terjadi gangguan pada stator, yaitu :
1. Terjadi gangguan satu fasa ke tanah pada stator
2. Setelah hubung singkat ke tanah yang pertama terjadi, kemudian muncul hubung singkat kedua pada fasa yang sama atau berbeda dan akhirnya menimbulkan hubung singkat antara dua titik pada belitan stator.

Tegangan lebih akibat ganguan Pada sistem yang tidak dibumikan, arus gangguan tanah sangat kecil. Arus ini hanya mengalir melalui kapasitansi sistem ke tanah sehingga tidak akan menyebabkan kerusakan. Namun, sistem yang tidak dibumikan tidak dapat diterapkan karena kapasitansi tersebut dapat menimbulkan kerusakan akibat adanya tegangan lebih.
Syarat utama dari suatu sistem pembumian adalah untuk membatasi tegangan lebih yang muncul pada saat gangguan agar tidak merusak peralatan. Tegangan lebih yang terjadi dapat berupa keadaan steady state dan transient. Tegangan lebih steady state disebabkan oleh gangguan hubung singkat ke tanah. Sedangkan tegangan lebih transient disebabkan oleh arcing ground. Besar tegangan lebih yang terjadi tergantung dari impedansi ke tanah. Jika netral generator dibumikan secara langsung, impedansi yang rendah akan mengakibatkan arus gangguan yang sangat besar. Namun sistem ini dapat mencegah terjadinya tegangan lebih yang terlalu besar. Impedansi tambahan pada sistem pembumian akan membatasi arus gangguan, namun juga harus mempertimbangkan tegangan lebih yang mungkin muncul sehingga tidak membahayakan peralatan. Tegangan lebih steady state akan muncul pada fasa yang tidak terganggu saat terjadi gangguan tanah. Tegangan pada fasa yang sehat merupakan gabungan dari tegangan fasa dan pergeseran titik netral.

Gambar 5 Tegangan pada saat terjadi gangguan
Gambar 5(a) menunjukkan tegangan fasa ke tanah pada saat kondisi normal. Pada sistem yang tidak dibumikan dan dibumikan melalui impedansi tinggi, pergeseran titik netral akibat gangguan hampir sama dengan tegangan fasa yang terganggu seperti ditunjukkan pada Gambar 5(b). Dan Gambar 5(c) menunjukkan tegangan lebih yang rendah dan hanya sedikit pergeseran pada titik netral. Hal ini terjadi pada sistem yang dibumikan melalui impedansi rendah. Kerusakan inti akibat hubung singkat ke tanah Hubung singkat ke tanah pada belitan stator merupakan salah satu perhatian utama pada proteksi generator. Gangguan tanah pada stator mengakibatkan perlunya pergantian kumparan yang rusak, dan hal ini membutuhkan biaya yang besar. Jika terjadi busur api pada titik gangguan maka akan mengakibatkan kebakaran yang serius pada laminasi inti stator. Rusaknya isolasi akan mengakibatkan hubung singkat antar laminasi dan arus yang terjadi akan mengakibatkan pemanasan lokal pada titik gangguan selama operasi normal. Dan akan diikuti oleh kerusakan lainnya, sehingga akan berakhir dengan kegagalan seluruh isolasi stator. Biaya perbaikan akan semakin mahal dan membutuhkan waktu yang semakin lama. Gangguan ini terjadi akibat kegagalan isolasi akibat penuaan dan gangguan mekanis seperti getaran. Gangguan tanah yang terjadi terdiri dari dua jenis yaitu :
1. Arus gangguan mengalir dari kumparan yang terganggu ke inti melalui kontak langsung atau melalui isolasi yang mengalami kerusakan.
2. Arus gangguan mengalir melalui busur gangguan. 


III. Proteksi Gangguan Hubung Singkat ke Tanah 

Ketika gangguan tanah muncul pada sebuah generator, sistem proteksi harus dapat mendeteksi gangguan tersebut dan generator harus segera dimatikan. Namun, sistem proteksi internal ini harus dikoordinasikan dengan sistem proteksi di dekatnya. Jika gangguan tanah muncul di luar generator, sistem proteksi internal tidak boleh bekerja. Sistem proteksi gangguan hubung tanah generator berkaitan langsung dengan sistem pembumian yang dipakai generator tersebut. Jadi metode yang digunakan juga bermacam – macam tergantung dari jenis pembumiannya. Pada metode pembumian dengan tahanan tinggi, rele yang dipakai adalah yang mempunyai sensitivitas tinggi dan waktu operasi yang lambat, karena arus gangguan cukup kecil sehingga tidak membahayakan bagi generator. Pada pembumian dengan tahanan rendah, rele yang digunakan harus mempunyai waktu operasi yang cepat dan tidak perlu terlalu sensitif, karena arus gangguan sangat besar dan membahayakan bagi generator.
1.      Metode Proteksi Tegangan Lebih Netral
Metode ini biasanya dipakai pada sistem pembumian tahanan tinggi. Proteksi dapat diperoleh dengan menghubungkan rele tegangan lebih waktu terbalik yang sensitif pada resistor atau reaktor pembumian di sekunder transformator distribusi. Rele ini merasakan tegangan Vo. Ketika hubung singkat ke tanah muncul, tegangan fasa – netral generator akan terasa pada primer trafo distribusi. Tegangan pada rele adalah fungsi dari turn ratio transformator dan tegangan maksimum akan dirasakan rele jika gangguan terjadi di terminal generator. Untuk gangguan di belitan stator, tegangan pada rele akan semakin kecil jika gangguan makin dekat ke netral. Pada pembumian tahanan tinggi, setting tegangan untuk rele 59GN adalah 6 V untuk tegangan sekunder trafo sebesar 120 V (dan 12 V untuk tegangan sekunder trafo sebesar 240 V). Misal belitan primer transformator distribusi mempunyi rating yang sama dengan tegangan fasa – netral generator dan tegangan belitan sekundernya 120 V. Rele akan mendeteksi tegangan sebesar 120 V jika gangguan terjadi pada terminal generator. Distribusi tegangan sepanjang belitan stator adalah linear, sehingga rele yang diset pada tegangan 6 V tidak dapat merasakan 6V/120V atau 5% bagian ujung netral generator.

Gambar 6 Metode proteksi tegangan lebih netral generator
2.      Skema Proteksi Tegangan Lebih Delta Terbuka
Skema proteksi ini dibuat dengan menghubungkan rele 59GN pada resistor pembumian di dalam rangkaian delta terbuka. Tegangan pada rele adalah 3V0. Prinsip kerjanya hampir sama dengan menggunakan trafo distribusi. Sistem ini dapat digunakan sebagai proteksi alternatif atau cadangan dari proteksi utama di atas.

Gambar 7 Skema proteksi tegangan lebih delta terbuka
Rangkaian delta terbuka menyebabkan adanya penjumlahan vektor tegangan fasa pada rele 59GN dan nilainya ekuivalen dengan 3V0.

3.      Proteksi Tegangan Lebih Rangkaian Urutan Nol
Proteksi stator yang paling konvensional dan umum digunakan adalah dengan menggunakan metode tegangan lebih rangkaian urutan nol. Metode ini cocok digunakan pada generator yang mempunyai sistem pentanahan dengan tahanan tinggi. Metode ini menggunakan rele arus lebih yang mempunyai tundaan waktu dan bekerja pada frekuensi nominal. Rele ini tidak sensitif terhadap tegangan harmonisa ketiga yang ada pada netral generator.
Metode ini mampu mendeteksi gangguan sampai 2-5% bagian stator yang paling dekat ke netral. Sebuah rele arus lebih waktu dapat digunakan sebagai proteksi cadangan.

Gambar 8. Proteksi tegangan lebih rangkaian urutan nol
4.      Skema Proteksi Arus Lebih
Skema ini dapat diterapkan pada sistem yang dibumikan melalui tahanan tinggi. Rasio fasa CT dipilih berdasarkan arus beban penuh generator, arus ini cukup besar jika dibandingkan dengan arus gangguan tanah. Arus gangguan tanah pada sistem pembumian tahanan tinggi hanya berkisar antara 5-10 A. Arus yang mengalir pada sekunder CT hanya bernilai beberapa milli ampere. Rele harus disetting agar dapat bekerja pada arus sekecil ini. Agar didapat sensitivitas untuk arus yang kecil, digunakan tiga jenis rangkaian proteksi seperti pada Gambar (3.9) . Gambar 3.9(a) menunjukkan pemakaian window CT untuk menyuplai rele. Pada aplikasi ini, keseluruhan konduktor tiga fasa dilewatkan melalui sebuah CT, sehingga fluks yang dihasilkan oleh arus pada tiap penghantar terakumulasi pada inti CT. Arus pada sekunder CT menjadi sebesar 3I0. Karena window CT tidak melewatkan arus yang seimbang, pemilihan rasio CT tidak tergantung kepada beban. Biasanya rasio yang dipakai adalah 50/5. Skema pada Gambar 3.9(b) dapt digunakan sebagai cadangan untuk rele 59GN. Rasio CT dipilih agar arus yang mengalir pada rele sesuai. Pada sistem yang dibumikan melalui tahanan tinggi, arus rele dapat dipilih kira – kira sebesar arus gangguan.

Gambar 9 Metode arus lebih tanah
5.      Proteksi Sistem Pembumian Melalui Tahanan rendah
Pada sistem pembumian tahanan rendah, arus gangguan tanah dapat berkisar dari 100 A sampai sebesar arus hubung singkat tiga fasanya. Arus sebesar ini dapat digunakan untuk metode proteksi arus lebih. Konfigurasi dari proteksi ini ditentukan oleh besarnya setting arus gangguan yang dipilih. Pada range arus yang rendah, rangkaian pada Gambar 3.9 (a) dan (b) dapat dipakai. Namun untuk penggunaan window CT dibatasi oleh adanya saturasi akibat arus gangguan yang besar. Skema 3.9 (c) dapat dipakai pada semua range arus. Rasio CT dipilih agar mampu menyediakan arus sekunder antara 10 – 20 A pada keadaan arus gangguan maksimum. CT harus mampu menyediakan tegangan sekunder yang cukup untuk rele tanpa mengalami saturasi yang berlebihan.




IV. PROTEKSI GANGGUAN HUBUNG TANAH PADA STATOR GENERATOR DENGAN     MENGGUNAKAN METODE TEGANGAN HARMONISA KETIGA 


1.      Prinsip Kerja
Proteksi menggunakan metode tegangan harmonisa ketiga memanfaatkan tegangan harmonisa ketiga yang dihasilkan secara natural oleh semua generator. Tegangan output generator tidak merupakan gelombang sinus murni, namun terdistorsi oleh tegangan harmonisa. Dari semua harmonisa yang ada, terdapat harmonisa kelipatan tiga (triplen) yaitu harmonisa ke 3, 9,15 dan seterusnya. Komponen triplen muncul dengan besar dan urutan fasa yang sama pada tiap fasanya. Sehingga harmonisa ini tidak saling meniadakan jika dijumlahkan disebabkan kesamaan urutan fasanya. Komponen ini muncul pada terminal netral generator sebagai besaran urutan nol (zero sequence quantity). Tegangan harmonisa ketiga merupakan komponen terbesar dibandingkan tegangan harmonisa lainnya. Prinsip kerja dari metode ini adalah berdasarkan pengukuran tegangan harmonisa ketiga yang terdapat pada netral, terminal atau pada keduanya. Tegangan yang diukur adalah tegangan harmonisa ketiga antara kedua titik di atas dan tanah. Tegangan harmonisa ketiga yang dihasilkan oleh generator muncul pada kedua ujung belitan stator dan berbeda – beda besarnya tergantung dari desain dan pembebanan generator tersebut.
Dalam kondisi normal, karakteristik tegangan harmonisa ketiga pada belitan stator adalah seperti Gambar (4.1) berikut:

Gambar (4.1) Karakteristik tegangan harmonisa ketiga pada kondisi normal
Tegangan harmonisa terdistribusi sepanjang belitan stator. Besar tegangan pada netral dan terminal generator dipengaruhi oleh besarnya kapasitansi ke tanah pada belitan stator dan kapasitansi sistem luar yang dekat dengan generator. Selain itu, besar tegangan harmonisa generator juga dipengaruhi oleh pembebanan. Pada Gambar (4.1) dapat kita lihat bahwa tegangan harmonisa pada kondisi beban penuh lebih besar daripada tegangan harmonisa beban nol. Ketika gangguan hubung singkat ke tanah muncul di dekat titik netral generator sinkron, tegangan harmonisa ketiga akan naik dan bernilai sama dengan total harmonisa ketiga yang dihasilkan generator. Sedangkan tegangan harmonisa ketiga di titik netral akan turun menjadi nol. Tegangan harmonisa ini akan semakin besar jika semakin dekat dengan terminal generator seperti Gambar (4.2) berikut :

Gambar 4.2 Tegangan harmonisa ketiga saat gangguan berada di titik netral
Saat gangguan terjadi di titik terminal generator maka tegangan harmonisa ketiga di terminal turun menjadi nol dan tegangan harmonisa ketiga di titik netral meningkat hingga sebesar total semua tegangan harmonisa ketiga yang dihasilkan generator. Karakteristiknya adalah sebagai berikut :

Gambar 4.3 Karakteristik tegangan harmonisa ketiga saat gangguan di titik terminal
Berdasarkan karakteristik di atas dapat didesain tiga skema utama sistem proteksi stator generator menggunakan metode tegangan harmonisa ketiga, yaitu skema tegangan-lebih, skema tegangan-kurang dan skema rasio tegangan. Pembagian skema ini didasarkan pada tempat dimana tegangan akan diukur yaitu apakah di terminal, di netral atau pada keduanya (netral dan terminal). Ketiga skema tersebut menggunakan rele yang disetel pada frekuensi harmonisa ketiga dan juga menggunakan rele standar tegangan lebih yang distel pada frekuensi dasar.
a.       Metode Proteksi Umum
Generator biasanya dibumikan melalui transformator pembumian dengan sebuah resistor. Biasanya netral dari transformator tegangan dibumikan secara langsung. Pada Gambar (4.4) kita lihat terdapat sebuah rele yang diparalelkan dengan resistor. Rele ini adalah rele tegangan lebih standar dengan frekuensi dasar (fundamental). Rele ini disetel agar dapat memproteksi belitan stator mulai dari titik terminal sampai maksimal 5% dekat titik netral generator. Sisa 5% belitan generator yang terdekat ke netral harus diproteksi dengan rele tegangan harmonisa ketiga.

Gambar 4.4 Proteksi gangguan tanah stator dengan rele tegangan lebih
b.      Proteksi Menggunakan tegangan Harmonisa Ketiga
Metode Proteksi Menggunakan metode tegangan harmonisa ketiga dapat dilakukan dengan tiga cara yang berbeda. Perubahan besar tegangan harmonisa ketiga pada generator akibat adanya gangguan hubung tanah stator dapat diukur di netral generator, Terminal Generator, maupun di kedua tempat tersebut dan kemudian dibandingkan.
-          Metode Tegangan Kurang
Metode Tegangan Kurang Pada metode ini, kita akan mengukur tegangan harmonisa ketiga yang terdapaat pada netral. Rangkaian proteksi metode tegangan kurang ini adalah seperti Gambar (4.5) berikut

Gambar (4.5) Metode Proteksi Tegangan Kurang
Dapat kita lihat bahwa rele 27H digunakan untuk mendeteksi tegangan harmonisa ketiga (150Hz) dan rele 59GN digunakan untuk mendeteksi tegangan yang mempunyai frekuensi dasar yaitu 50 Hz. Kedua rele ini sama – sama mengukur tegangan di netral generator pada saat gangguan terjadi. Rele 59GN melindungi bagian 0-95% dari belitan stator sedangkan rele 27H melindungi 5% belitan yang terdekat ke netral. Sehingga apabila kedua rele ini bekerja bersama - sama, akan dapat melindungi keseluruhan belitan stator.
Rele 27H harus diatur agar tegangan pick – up nya cukup rendah untuk menghindari bekerjanya rele pada saat keadaan normal dimana tegangan harmonisa ketiga yang dihasilkan realtif rendah. Namun, tegangan pick – up ini harus cukup tinggi agar dapatmendeteksi gangguan yang tidak dapat dirasakan oleh rele 59GN pada saat keadaan tegangan harmonisa ketiga maksimum.
-          Metode Tegangan Lebih
Pada metode tegangan lebih ini, kita akan mengukur tegangan harmonisa ketiga pada terminal generator. Rele 59T akan mendeteksi kenaikan tegangan harmonisa ketiga di terminal saat terjadi gangguan di dekat netral generator. Tegangan pick – up rele 59T ini harus diatur agar lebih besar dari tegangan harmonisa ketiga saat kondisi normal. Namun disaat yang sama harus lebih kecil dari tegangan minimum yang dihasilkan saat terjadi gangguan dekat dengan titik netral.

Gambar (4.6) Metode proteksi tegangan lebih
-          Metode Rasio Tegangan
Tegangan harmonisa ketiga akan diukur pada kedua ujung belitan, yaitu pada netral dan terminal generator. Kedua tegangan ini akan dibandingkan dan didapatkan rasio perbandingannya.
Metode proteksi rasio tegangan ini lebih baik dibandingkan kedua metode di atas, karena seringkali sulit dalam menentukan setting pick – up baik pada metode tegangan kurang maupun metode tegangan lebih. Hal ini terjadi karena adanya variasi tegangan harmonisa ketiga saat kondisi beban yang berbeda – beda. Pada kondisi beban nol dan beban ringan, tegangan harmonisa ketiga relatif kecil jika dibandingkan dengan saat generator bekerja dengan beban penuh. Variasi tegangan ini dapat diatasi dengan rasio tegangan, karena rasio tegangan harmonisa ketiga di netral dan terminal relatif sama untuk semua kondisi pembebanan generator.

Gambar (4.7) Metode Proteksi Rasio Tegangan


2.      Tegangan Harmonisa Ketiga Generator
Untuk dapat melakukan simulasi metode tegangan harmonisa ketiga, kita harus mengetahui terlebih rangkaian ekivalen generator berdasarkan tegangan harmonisa ketiga yang dihasilkannya. Sehingga perlu dibuat beberapa asumsi untuk memperoleh model rangkaian yang sesuai.
Generator akan dimodelkan sebagai berikut
• Masing – masing fasa terdiri dari satu reaktansi sinkron (Xd), transient (Xd’), dan reaktansi subtransient (X d’’).
• Kapasitansi antara belitan stator ke tanah dimodelkan sebagai sebuah kapasitor pada tiap fasa dan terletak setelah reaktansi.
• Tegangan harmonisa ketiga per fasa dimodelkan sebagai E3, yaitu keseluruhan tegangan harmonisa ketiga yang dihasilkan oleh belitan stator. Tegangan ini sama besar dan sudut fasanya pada ketiga fasa generator.
• Bus yang menghubungkan generator dengan transformator step – up, kapasitor surja, dan transformator step – up masing – masing dimodelkan sebagai sebuah kapasitor karena yang berpengaruh hanya kapasitansi ke tanahnya.
• Transformator pembumian dimodelkan sebagai sebuah resistor RN di netral generator.

Dari asumsi di atas, kita dapat membuat rangkaian ekivalen generator seperti Gambar (4.8) berikut.

Gambar (4.8) Rangkaian ekivalen untuk tegangan harmonisa generato
a.       Nilai konstanta Generator
Untuk pemodelan dan simulasi, kita menggunakan data generator Mitsubishi unit 7 pada PLTU Suralaya dengan data sebagai berikut :
Tabel 4.1 Data name plate generator unit 7 PLTU Suralaya

b.      Tegangan Harmonisa Ketiga
Tegangan harmonisa ketiga pada sebuah generator tergantung dari desain generator tersebut dan tegangan ini dapat bervariasi, tergantung dari kondisi pembebanan generator. Untuk menganalisa besarnya tegangan harmonisa ketiga yang dihasilkan oleh generator, maka kita harus menganalisa tiga kemungkinan pembebanan yang terjadi. Yaitu beban nol, beban ringan, dan beban penuh. Tegangan harmonisa ketiga pada saat beban ringan merupakan tegangan minimum yang dihasilkan sedangkan tegangan harmonisa ketiga pada kondisi beban penuh merupakan tegangan maksimum. Pada paper R. L. Schalke (1981), disebutkan bahwa tegangan harmonisa ketiga pada saat berbeban ringan adalah kira – kira sebesar 57% dari tegangan harmonisa beban nol, dan tegangan harmonisa ketiga pada beban penuh adalah 200% dari tegangan harmonisa beban nol. Kita dapat menghitung nilai tegangan harmonisa saat beban nol yaitu sebesar :

Dan tegangan harmonisa ketiga saat beban ringan dan beban penuh adalah :

Tabel 4.2 Tegangan harmonisa ketiga pada berbagai kondisi pembebanan

Nilai pada Tabel (4.2) akan kita pakai sebagai acuan besar tegangan harmonisa ketiga pada berbagai pembebanan generator.
3.      Rangkaian Ekuivalen
Rangkaian ekivalen untuk simulasi karakteristik tegangan harmonisa ketiga dapat kita bagi menjadi dua. Pertama, kondisi normal (tidak ada gangguan) dan yang kedua adalah saat kondisi gangguan.
a.       Rangkaian Ekivalen Kondisi Normal
Rangkaian ekivalen tegangan harmonisa ketiga dan kapasitansi ke tanah pada generator adalah seperti pada Gambar 4.9. rangkaian ini dibuat berdasarkan beberapa penyederhanaan agar lebih mudah menganalisanya. Penyederhanaan tersebut adalah sebagai berikut :
-          Tegangan harmonisa ketiga terdistribusi secara merata sepanjang permukaan stator dan besarnya tergantung kepada pembebanan generator, tegangan ini dimisalkan dengan sebuah sumber tegangan AC yang mempunyai frekuensi 150 Hz.
-          Kapasitansi generator terdistribusi secara merata sepanjang stator dan dimisalkan dengan dua buah kapasitor yang dibumikan, satu terletak sebelum sumber AC dan satu lagi terletak sesudahnya.
-          Induktansi seri dari belitan diabaikan.
Rangkaian ekivalen untuk kondisi tanpa gangguan berdasarkan asumsi diatas dapat digambarkan sebagai berikut :

Gambar (4.9) Rangkaian ekivalen kondisi normal
Keterangan :
E3 = Tegangan harmonisa ketiga yang dibangkitkan
Cg = Kapasitansi belitan stator ke tanah
Cp = Kapasitansi dari Sistem luar dilihat dari sisi generator
Rn = Tahanan Pembumian
b.      Rangkaian Ekivalen Kondisi Gangguan
Rangkaian ekivalen generator pada saat gangguan adalah seperti pada Gambar (4.10). Untuk fasa yang sehat, rangkaian ekivalennya sama dengan Gambar (4.9). Kita melakukan beberapa penyederhanaan untuk fasa yang mengalami gangguan dengan asumsi sebagai berikut :
-          Tegangan harmonisa ketiga pada fasa yang terganggu dimisalkan sebagai dua sumber tegangan AC, yang pertama terletak antara titik netral dan titik gangguan (E3n) dan yang kedua terletak antara titik gangguan dan terminal generator (E3t).
-          Kapasitansi generator ke tanah dimisalkan dengan dua buah kapasitor untuk masing – masing satu sumber tegangan AC.
-          Sumber tegangan AC dan kapasitansi ke tanah merupakan fungsi jarak titik gangguan dari netral.

Keterangan :
E3n dan E3t : Tegangan harmonisa ketiga yang dihasilkan belitan stator antara netral generator dan titik gangguan K, dan antara titik gangguan dengan terminal generator
Cg : Kapasitansi belitan stator ke tanah
CP : Kapasitansi dari sistem luar dilihat dari sisi generator
Cn dan Ct : Kapasitansi belitan stator ke tanah antara titik netral dengan titik gangguan K, dan antara titik gangguan dengan terminal generator
Rn : Tahanan Pembumian
Rf : tahanan gangguan

Gambar (4.10) Rangkaian ekivalen kondisi gangguan
Parameter E3n dan E3t adalah sebagai berikut :

Cn dan Ct juga merupakan fungsi dari jarak gangguan yaitu :

Dimana K adalah jarak lokasi gangguan dari titik netral generator K = 0, 0,1 .....,1.
c.       Persamaan Matematis
Tegangan harmonisa ketiga muncul sebagai besaran urutan nol, sehingga untuk menganalisa distribusi tegangan harmonisa ketiga kita perlu menganalisa rangkaian urutan nol generator. Tegangan ini akan tersebar pada terminal dan impedansi shunt dari netral generator berdasarkan rangkaian ekivalen urutan nol generator.

Gambar (4.11) Rangkaian urutan nol
Pada Gambar (4.11) diketahui nilai Zg ekivalen dengan tahanan pembumian generator yaitu sebesar 1586 Ω. Kapasitansi sisi netral (Con) adalah setengah dari kapasitansi total belitan stator (Xcs/2), dan kapasitansi sisi terminal (Cot) sebesar setengah kapasitansi belitan stator ditambah kapasitansi eksternal (Xcs/2 + Ct). Nilai Con dan Cot dapat dihitung dari konstanta generator :

Reaktansi kapasitifnya sebesar :

Dimana f3 adalah frekuensi harmonisa ketiga, yaitu sebesar 150 Hz.
Impedansi sisi netral adalah gabungan paralel dari Xon dan 3Rn yaitu sebesar :

Distribusi tegangan harmonisa saat kondisi tidak berbeban dapat dihitung sebagai berikut. Tegangan pada sisi netral generator :

V0 : tegangan harmonisa ketiga saat tidak berbeban (173 Volt). Distribusi
Distribusi tegangan harmonisa ketiga saat generator berbeban ringan adalah : Tegangan pada sisi netral generator :

Tegangan pada sisi terminal generator :

V0 : tegangan harmonisa ketiga saat beban ringan (99 Volt).
Distribusi tegangan harmonisa ketiga saat generator berbeban penuh adalah : Tegangan pada sisi netral generator :

Tegangan pada sisi terminal generator :

V0 : tegangan harmonisa ketiga saat beban penuh (346 Volt).
Tabel (4.3) Distribusi tegangan harmonisa ketiga

Dari tabel distribusi tegangan harmonisa di atas, kita dapat membandingkan nilai tegangan harmonisa di netral dan terminal pada kondisi pembebanan tertentu. Nilai perbandingan ini kita sebut rasio. Rasio tegangan ini yang akan dipakai pada salah satu metode yang akan kita bahas. Persamaan (4.5) dan (4.6) menunjukkan cara menghitung rasio tegangan.


Rasio tegangan yang kita dapat dengan menggunakan persamaan (4.5) adalah konstan sebesar 0,68 dan dengan menggunakan persamaan (4.6) didapat sebesar 0,46. Rasio ini konstan untuk semua jenis pembebanan generator. Sehingga kita dapat mengambil kesimpulan bahwa rasio tegangan tidak dipengaruhi oleh pembebanan generator. Setelah mendapatkan besarnya tegangan harmonisa pada netral dan terminal, kita akan menganalisa fasa yang mengalami hubung singkat ke tanah. Rangkaian ekivalennya dapat dilihat pada Gambar (4.12).

Gambar (4.12) Rangkaian ekivalen fasa yang terganggu
Pada rangkaian ekivalen di atas, kita bagi kapasitansi belitan menjadi dua yaitu bagian ujung netral (Cn) dan ujung terminal (Ct). Hubung singkat ke tanah kita anggap melalui tahanan gangguan (Rf). Hal ini dilakukan agar mempermudah perhitungan. Dari rangkaian ekivalen tersebut kita mendapatkan persamaan sebagai berikut :




BAB V
KESIMPULAN DAN SARAN
V.1 Kesimpulan
1. Proteksi dengan menggunakan metode tegangan harmonisa ketiga dapat mendeteksi gangguan pada bagian terdekat dengan titik netral.
2. Metode proteksi yang dapat digunakan adalah metode tegangan kurang dan metode rasio tegangan.
3. Metode yang terbaik digunakan adalah metode rasio tegangan, karena tidak tergantung dari tingkat pembebanan generator.
4. Setting tegangan pick – up untuk metode tegangan kurang adalah 60 – 65 V, sedangkan untuk metode rasio tegangan adalah > 0,46.
5. Tahanan Gangguan maksimum yang dapat dideteksi pada metode tegangan kurang adalah sebesar 100 Ohm sedangkan pada metode rasio tegangan sebesar 10 kOhm.

V.2 Saran
1. Untuk selanjutnya, perlu dicari tahanan kritis gangguan agar dapat ditentukan setting rele yang lebih baik. 2. Kita dapat menggunakan metode lain dalam penentuan rasio tegangan. Rasio tegangan yang lebih stabil dan lebih sensitif terhadap gangguan dengan resistansi tinggi.


DAFTAR PUSTAKA
www.4shared.com/pengamanan-motor-listrik

www.google.com/proteksi-motor-listrik






Tidak ada komentar:

Posting Komentar